

JIFA January 31th 2014

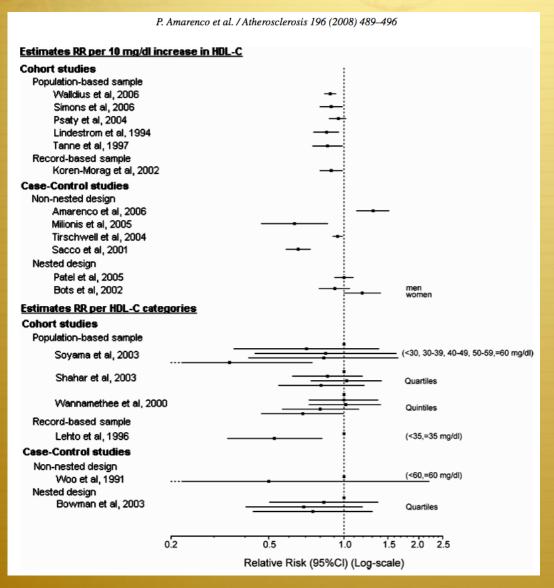
HDL and Arterial Wall

P-J TOUBOUL
INISED M608 Righet Uni

INSERM698 – Bichat University

Conflict of Interest

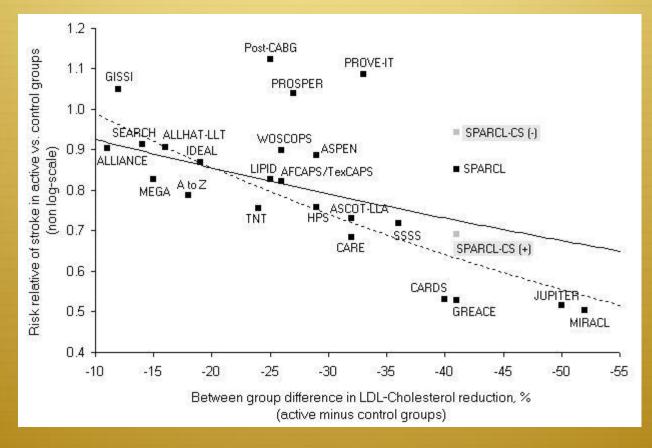
- ♦ M'Ath intellectual property owner
- → Involvement in R & D for atherosclerosis software developments


HDL-C as a marker

- ♦ HDL-C, LDL-C & CCA-IMT are independent markers of future CVE.
- ♦ LDL lowering is associated with CVE incidence reduction
- ♦ Epidemiological association between HDL C, triglycerides levels and risk of CV disease.

HDL-C and CHD

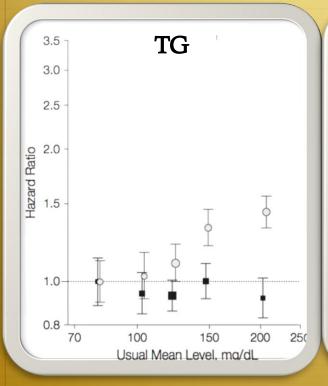
HDL and Stroke Risk: Systematic Review

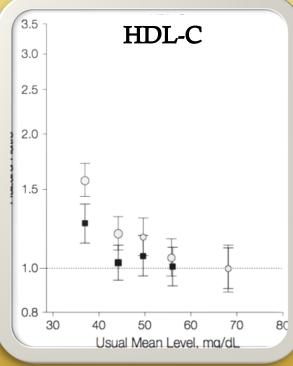


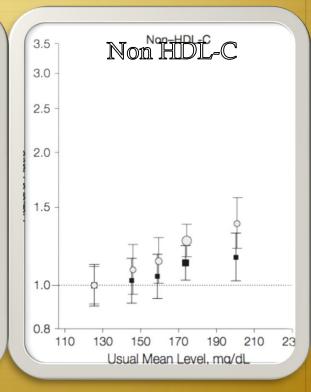
10 Prospective cohort studies (n=238,739): 11 to 15% decreased stroke risk per 10 mg/dL increase in HDL-C

Stroke Risk and LDL Lowering

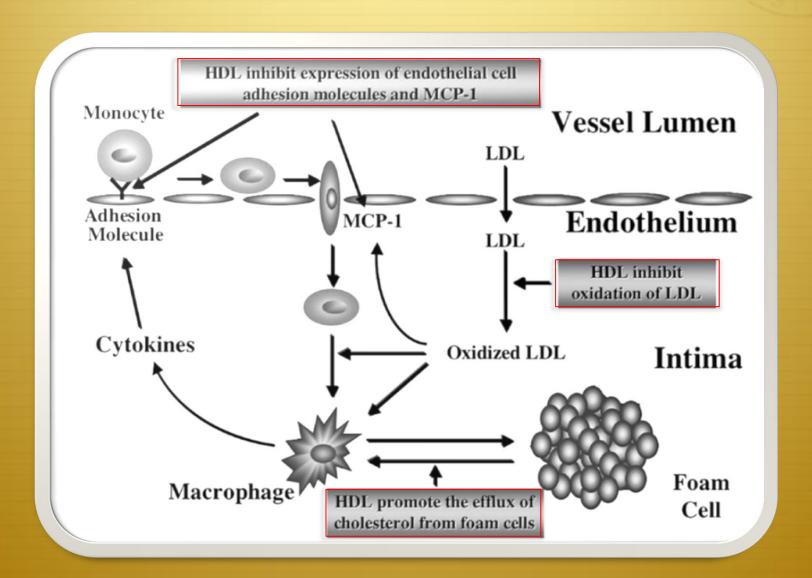
Each 1 mmol (39 mg) LDL-C reduction reduced the risk of stroke by 21% (95% CI 6.3 to 33.5%, p<0.001)

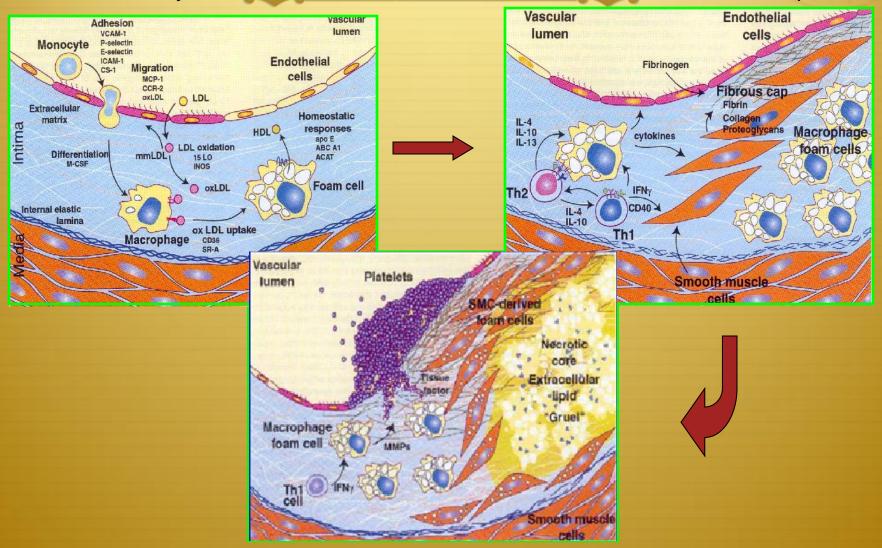

Total n=165,732




Amarenco P, Labreuche J. Lancet Neurol. 2009; 8:453-63

Emerging Risk Factor Collaboration

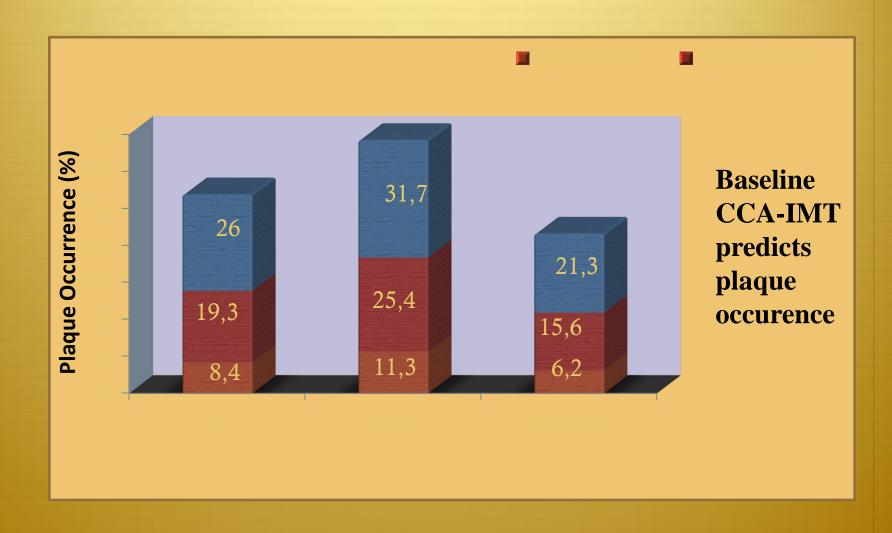

Risk of Stroke


Anti-Atherosclerotic effect

Atherogenesis

Endothelial dysfunction & IMT

Foam Cells -→ Plaque


Thrombus

Glass, Cell 2001,104:503-516

HDL-C and vascular protective properties

- Promote cholesterol efflux from macrophages in the artery wall
- ♦ Anti-oxidant
- ♦ Anti-thrombotic
- Anti-inflammatory
- Improve endothelial function & repair
- Improve diabetic control
- ♦ Others

IMT & Plaque: the EVA Study

IMT and Plaque: EVA Study

TABLE 4. ORs and 95% CIs for Carotid Plaque Occurrence During Follow-Up Associated With Quartiles of Baseline CCA-IMT According to Presence of Carotid Plaques at Baseline

Presence of Carotid Plaques at Baseline	Quartile 1	Quartiles 2-3	Quartile 4	
No				
n	197	461	156	
Plaque occurrence, %	7.6	16.5	18.6	
Age- and sex-adjusted OR	1	2.43 (1.35-4.36)†	2.66 (1.36-5.19)†	
Multivariate-adjusted OR*	1	2.29 (1.27-4.12)†	2.43 (1.23-4.78)†	
Yes				
n	29	100	67	
Plaque occurrence, %	13.8	32.0	43.3	
Age- and sex-adjusted OR	1	3.24 (1.03-10.20)‡	5.06 (1.56-16.41)	
Multivariate-adjusted OR*	1	3.28 (1.00-10.27)‡	5.24 (1.51-18.26)1	

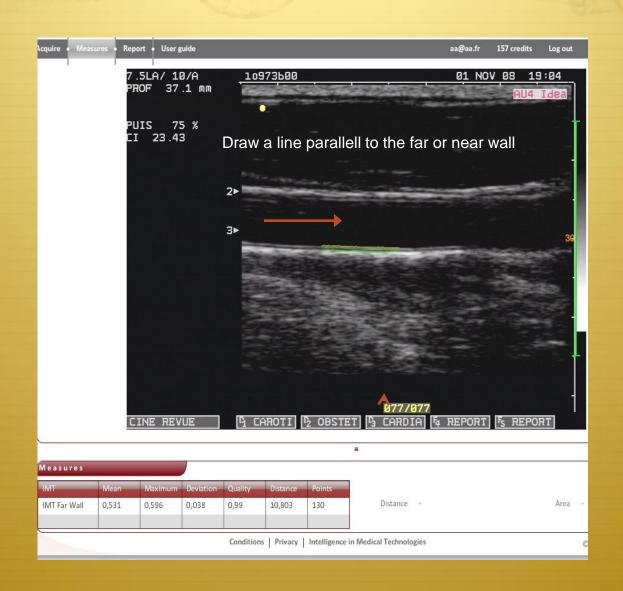
^{*}Adjusted for sex and baseline age, history of smoking, hypertension (3 categories as in Table 2, 2 dummy variables), diabetes (3 categories as in Table 2, 2 dummy variables), hypercholesterolemia, and personal history of CHD.

 $†P \le 0.01$ and $‡P \le 0.05$.

Rationale for the HDL/IMT evaluation

- * Association between HDL-C reduction and CV events
- Prooven association between LDL increase and CV events
- ♦ Statistical association between LDL level decrease and risk of stroke.
- Inverse association between IMT values and stroke in prospective studies

Methods


- ♦ Data from 6 cross sectional Ultrasound studies
- ♦ All observational, 5 published and one stopped
- ♦ Same ultrasound methodology to minimize variability :
 - → Following same IMT definition (Mannheim consensus)
 - ♦ Edge detection IMT measurement
 - * Same training of all investigators involved in these studies
 - → Image acquisition done on the same software
 - Data were processed at the same core lab (Intelligence in Medical Technologies ®)

Methods (II)

Risk factors definition:

- BP : > 140-90 mmHg or current bpld treatment
- Dyslipidemia : LDL-C > 160mg/dL (Friedewald formula) or current 1ld treatment.
- Diabetes Blood glucose > 126mg/dL or current treatment for Diabetes (I or II)
- Family history of MI (< 55 y-o for men, <65 y-o for women)
- Early menopausis (<40 y-o)
- Lipid parameters all obtained at inclusion time.

IMT Measurement

Methods (III)

Ultrasound:

- CCA IMT on both CCA far walls
- Angle with the best view
- 10mm lenght in a region free of plaque
- -QI > or = 0.5
- Mean of right and left CCA IMT was computed.

Populations

.haracteristics from the six cross-sectional studies contributing to the current meta-analysis.

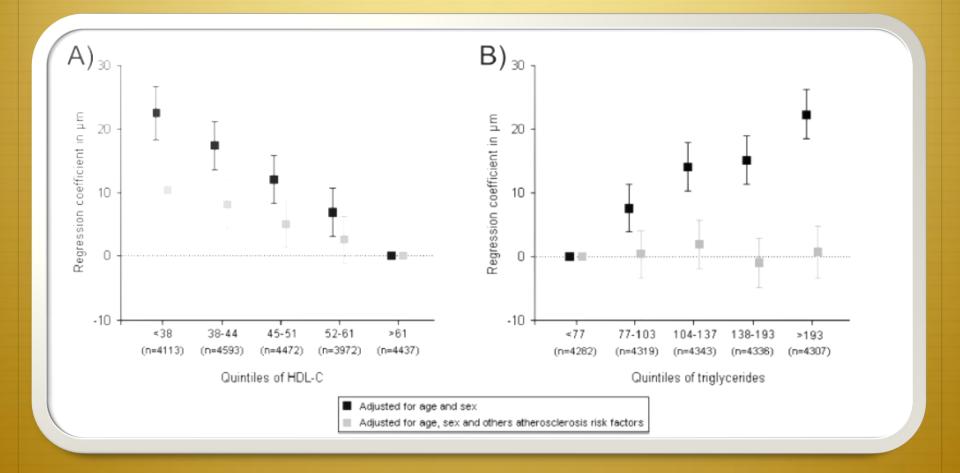
	CARMELA [10] (n = 10,415)	PARC [19] (n = 5264)	PARC-AALA [20] (n = 2328)	PI2 (n = 554)	REMEMBER [22] (n = 606)	VITA [21] (n = 2420)
Age, y	44.7 ± 11.3	60.6 ± 11.6	49.8 ± 8.3	56.3 ± 7.5	66.8 ± 8.3	54.0 ± 4.5
Male	4852 (46.6)	2999 (57.0)	1123 (48.2)	278 (50.2)	286 (47.2)	1073 (44.3)
Body mass index, kg/m ²	27.3 ± 4.8	25.8 ± 4.1	26.3 ± 4.5	26.9 ± 4.2	27.9 ± 4.2	25.7 ± 4.0
Diabetes	566 (5.4)	657 (12.5)	171 (7.4)	86 (15.5)	110 (18.2)	108 (4.5)
Current smokers	3312 (31.8)	795 (15.1)	206 (8.9)	126 (22.7)	101 (16.7)	567 (23.4)
Antihypertensive treatment	1198 (11.5)	2022 (38.7)	600 (25.8)	266 (48.0)	258 (42.6)	398 (16.5)
Systolic blood pressure, mmHg	120 ± 18	136 ± 16	138 ± 22	133 ± 16	140 ± 19	138 ± 18
Diastolic blood pressure, mmHg	77 ± 11	80 ± 9	86 ± 13	79 ± 10	80 ± 10	83 ± 9
Lipid-lowering treatment	233 (2.2)	2077 (39.6)	168 (7.2)	226 (40.8)	69 (11.4)	1980 (81.8)
Total cholesterol, mg/dL	198 ± 42	215 ± 42	209 ± 44	214 ± 39	223 ± 40	234 ± 38
LDL-C, mg/dL	121 ± 35	134 ± 37	133 ± 40	129 ± 34	137 ± 34	161 ± 35
HDL-C, mg/dL	46 ± 13	56 ± 17	50 ± 13	60 ± 16	61 ± 14	49 ± 13
LDL-C/HDL-C ratio	2.8 ± 1.0	2.6 ± 1.1	2.9 ± 1.3	2.3 ± 0.9	2.3 ± 0.7	3.5 ± 1.2
Triglycerides, mg/dL	132 (90-195)	107 (77-150)	133 (88-186)	110 (81-149)	108 (81-149)	103 (76-147)
Personal history of CHD	432 (4.2)	1450 (27.6)	150 (6.4)	1 (0.2)	95 (15.8)	27 (1.1)
Familial history of CHD	1378 (13.2)	802 (15.4)	201 (8.6)	109 (19.7)	99 (16.4)	216 (8.9)
CCA-IMT, mm	0.668 ± 0.105	0.751 ± 0.123	0.692 ± 0.114	0.786 ± 0.090	0.761 ± 0.103	0.668 ± 0.078
Carotid plaques	1077 (10.5)	NA	492 (22.8)	8 (1.4)	399 (65.8)	12.6 (304)

'alues are mean ± SD, number (%) or median (IQR). CARMELA indicates Cardiovascular Risk Factor Multiple Evaluation in Latin America; PARC, Paroi Artérielle et Risque Cardiovasculaire; PARC-AALA, Paroi Arterielle et Risque Cardiovasculaire in Asia, Africa/Middle East and Latin America; PI2, Plaque Intima-media Inflammation; REMEMBER legistry Evaluation Memory in Buttrio e Remanzacco; VITA, Vicenza Thrombophilia and Atherosclerosis; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density ipoprotein cholesterol; CHD, coronary heart disease; CCA-IMT, common carotid artery intima-media thickness; SD, standard deviation; IQR, interquartile range; NA, not vailable.

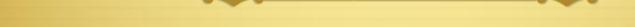
vailable.

Touboul P-J, Labreuche J, Bruckert E & al Atherosclerosis232(2014) 65-71

Main Results of this meta analysis

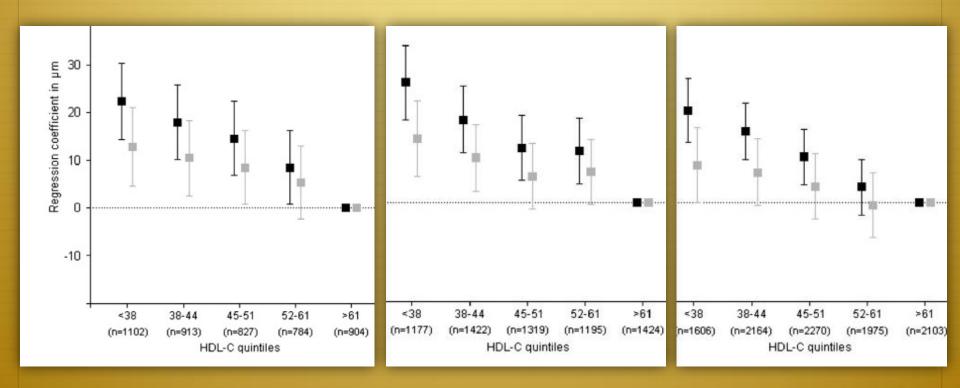

Total Population: 21587 patients with complete information

Individual meta analysis


Mean age 51, 49% men

Across the studies: mean HDL ranged from 46 to 61 mg/dl

CCA-IMT and Quintiles of HDL-C, Triglyceride levels

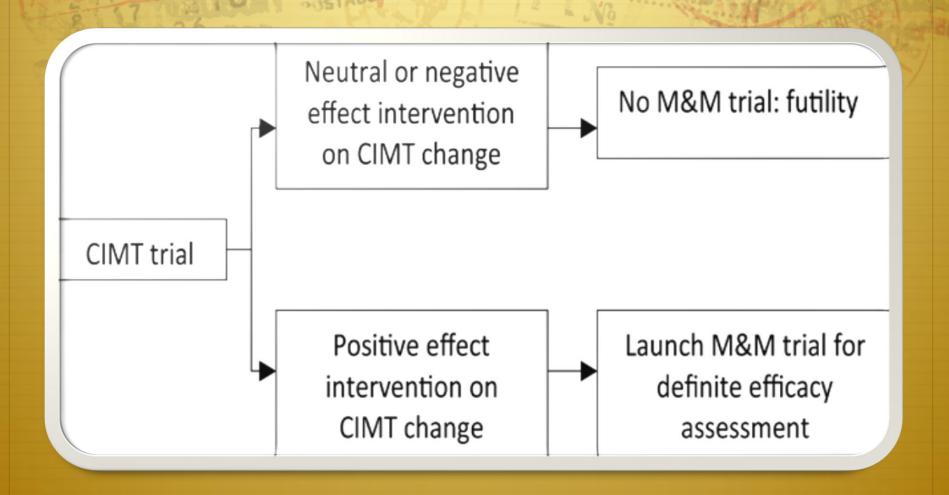

HDL/IMT associations according to LDL Levels

LDL-C <100 mg/dL

LDL-C 101-130 mg/dL

LDL-C > 100 mg/dL

New Trends in Atherosclerotic Evaluation


Meta-analysis of CIMT change in 48 Randomized Studies

CIMT Trial as Decision Tool for Launching a Large-Scale Morbidity and Mortality Trial, Overall and for Lipid-Level Modifying Therapies and Nonlipid-Level Modifying Therapies Separately

	PPV	NPV	Sensitivity	Specificity
Lipid-level modifying	1.00 (0.77; 1.00)	0.86 (0.49; 0.97)	0.93 (0.79; 0.99)	1.00 (0.61; 1.00
Nonlipid-level modifying	0.91 (0.62; 0.98)	0.82 (0.59; 0.94)	0.77 (0.50; 0.92)	0.93 (0.70; 0.99
Primary prevention	0.93 (0.70; 0.99)	0.67 (0.39; 0.86)	0.78 (0.55; 0.91)	0.89 (0.57; 0.98
Secondary prevention	1.00 (0.72; 1.00)	0.91 (0.62; 0.98)	0.91 (0.62; 0.98)	1.00 (0.72; 1.00

CIMT indicates carotid intima-media thickness; M&M, morbidity and mortality; NPV, negative predictive value; and PPV, positive predictive value. Values between brackets are the 95% confidence intervals.

New Trends in Atherosclerotic Evaluation

Conclusion

- CCA-IMT evolution might be a powerfull endpoint for the evaluation of HDL-C raising agents.
- Longitudinal studies including prospective IMT and plaque evaluation
 and clinical outcome should be done to confirm these data
- IMT change and plaque occurrence might be in the future the first step to go for anti atherosclerotic drugs evaluation .